If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9^3=14q^2+49q=0
We move all terms to the left:
9^3-(14q^2+49q)=0
We add all the numbers together, and all the variables
-(14q^2+49q)+729=0
We get rid of parentheses
-14q^2-49q+729=0
a = -14; b = -49; c = +729;
Δ = b2-4ac
Δ = -492-4·(-14)·729
Δ = 43225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{43225}=\sqrt{25*1729}=\sqrt{25}*\sqrt{1729}=5\sqrt{1729}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-49)-5\sqrt{1729}}{2*-14}=\frac{49-5\sqrt{1729}}{-28} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-49)+5\sqrt{1729}}{2*-14}=\frac{49+5\sqrt{1729}}{-28} $
| 87-x=79 | | 87-x=78 | | 5a+2a-3a=…. | | 3x+0,0009(3x)=550 | | k+3=6•9 | | 0,009(3x)+3x=100 | | X(3Y)+3x=100 | | 4+3x+(-x+4)=18 | | x+2x+(x+4)=34 | | 23-z=71 | | 2x+10÷6=8 | | 18+15-125=4n | | 4x+2x+(-x+5)=15 | | 9x−13=10 | | 100-40=12x | | (1/x)-(1/9)=(4/9)-(2/3x) | | 10m=3m+287m= 28 | | 3(y+4)=5(y-8 | | 195t+87-16t^2=0 | | 195t-16t^2+87=0 | | 2(3a-9)=2(2a-11) | | 11x-3x+6x–8x= | | 2^x*4^2x=8 | | 2(4a+9)=2a+21 | | -26•(26+x)=520 | | 31x+50=360 | | 0,2x+28=60 | | 5+2m=29 | | 3x-2(4-2x)=x+8 | | 14x+6=-3x+18 | | x+12+x+43=6 | | 3a-9=1+2a |